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Abstract. Mathematical treatment of massive wall systems is a useful tool for investigation of these solar applications. 
The objectives of this work are to develop (and validate) a numerical solution model for predication the thermal 
behaviour of passive solar systems with massive wall, to improve knowledge of using indirect passive solar systems 
and assess its energy efficiency according to climatic conditions in Bulgaria. The problem of passive solar systems with 
massive walls is modelled by thermal and mass transfer equations. As a boundary conditions for the mathematical 
problem are used equations, which describe influence of weather data and constructive parameters of building on the 
thermal performance of the passive system. The mathematical model is solved by means of finite-differences method 
and improved solution procedure.   In article are presented results of theoretical and experimental study for developing 
and validating a numerical solution model for predication the thermal behaviour of passive solar systems with massive 
wall. 
 

I. INTRODUCTION 
 The concept of passive solar systems is well-known method for use of solar energy as a source 

of heating in buildings. There is a vast literature on this technology, but real objects (houses) with 
passive solar systems are still rare. The major impediments to increase market penetration of passive 
solar systems is the lack of available information and experience data for the efficiency and 
constructive parameters of passive solar elements.   

 The main concept of indirect passive solar systems is Trombe-Michel wall. Most 
experimental and theoretical data, published on Trombe wall performance are in form of overall 
building performance. Data of overall performance is of limited use, as it only provides seasonal 
estimates of heat gains for specific building designs, wall patterns and climates. Because of the large 
number of parameters and the wide range of weather conditions, which influence the operation of 
massive walls, the assessment of the thermal behavior requires the use of thermal simulation 
techniques.  

Literature review shows that the problem of passive solar systems with massive walls is 
ordinarily modelled by thermal and mass transfer equations [4,7]. As boundary conditions for the 
mathematical problem must be used equations, which describe influence of weather data and 
constructive parameters of building on the thermal performance of the passive system. The 
mathematical model, composed for the massive wall performance, is usually very complicated and 
for solving the mathematical system of equations it is necessary to apply a different set of 
assumptions.   

The purpose of this article is to present the results of theoretical and experimental study for 
developing and validating a numerical solution model for predication the thermal behaviour of 
passive solar systems with massive wall. 

 
  2. MATHEMATICAL MODEL 

The simulation scheme of typical passive solar system with massive wall is shown in Fig. 1. The 
massive wall is usually mounted on the south facade of the house. It comprises three layers: a 
transparent cover (one or two glasses or plastic plates), a massive wall (masonry, concrete) and air 
gap between transparent cover and massive wall. At the bottom and the top of the massive wall, 
there are vents for allowing an air circulation between air gap and room space. The external 
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transparent cover transmits solar radiation in, but holds back heat. Wall surface is painted black at its 
outer side and act as an absorber of solar radiation. It stores heat from the day and releases it with 
time to the room space by radiative heat transfer. The air layer between transparent cover and 
massive wall is heated in contact with the wall surface, rises and circulates towards the room (when 
the vents are open).   

In summer, inhabitants close the vents and 
air circulation is stopped during the day. 
During the night, vents in upper end of 
glazing can be opened and natural 
ventilation in room space can be organized. 
The thermal analysis of such system is very 
complicated. Mathematical model is based 
on the transient performance of the system. 
It comprises energy balance equations, 
written for each element of the system. 
Since the wall is taken to be large (in 
comparison with wall thickness), the 
temperature variation in y - direction (wall 
width) will be neglected, and only two-
dimensional problem can be considered - 
the hight (z – direction) and thickness (x – 

direction). The governing energy conservation equation of heat transfer in massive walls is: 
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Fig.1. Scheme of ‘Trombe Wall’ System
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where T refers to the temperature in the wall, τ is time variable, x and z – space variables and a is a 
material constant. The boundary conditions, needed for the solution of eqn (1), are derived from an 
energy balance for elements of passive system. The cover glazing is assumed to absorb no solar 
radiation and only exchanges heat by convection and radiation with the wall surface and the 
ambient. Heat transfer rate in elements of the massive wall is given by: 
at  x = δ   (an inner wall surface) 
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at x = 0:  (an outer wall surface)                                                               
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at inner glass cover: 
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at outer glass cover: 
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where Twn,Tw0 are temperatures of wall surfaces (x=δ and x=0) 
Tag, Tg1, Tg2, Ta, Twall, Tr, Tsky - temperatures of air in the gap, glass covers, ambient air, averages of 
room’s walls, air in room and sky, respectively 
hc.. - Convective transfer coefficients, W/m2oK, 
hr..  - Radiant transfer coefficients, W/m2oK, 
h12 - heat transfer coefficient in space between glass covers, W/m2oK. 



Next the air gap is considered.  A differential formulation, which includes terms due to 
thermal capacity and convective heat transfer from the wall surface and glazing cover to the air, 
leads to the equation: 
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where  ρ    is the air density [kg/m3]; cp  - heat capacity of air [J/kgoK]; Gag - air flow rate in a gap, 
[m3/s]; B  - wall width [m], (τα)e - an absorptance-transmittance product for the total insolation on a 
vertical surface 

 The air flow rate for air circulation in the air cavity is determined by the average air 
velocity. According to J.A.Duffie and W.A. Beckman [4], natural convection in cavity can be 
assessed by next expression: 
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where  C1 and C2 are constants that depend on hydraulic 

characteristics of the gap, 
Ag,Av  - gap area and vent area [m2] ; H - wall height, Tm, Tr - average temperature of air in gap and 
temperature of air in room. 

System (1) – (7) is unsteady two-dimensional mathematical model of massive wall system. 
The model has a combined system of algebraic and differential equations as a boundary condition. 
This model is rather difficult to solve due to the complicate thermal and mass transfer processes in 
system. The main problems which arise during solving processes are: 

- Temperature variation in direction z (according to the wall height) requires solving all 
equations (2) – (7) with respect to this variation. Hence, it is necessary to consider vertical 
temperature variations in the glasses and gap. This can be done only by including new heat transfer 
equations (such as equation (1)) for glass covers. This temperature variation is caused mainly by air 
circulation in the cavity (air convection).  

- The circulation in the air cavity depends on the value of air velocity and therefore, on the 
temperature difference in down and upper part of the air gap - eqn. (7).  At the same time, the 
temperature difference depends on the convective transfer coefficient hcgap, which is function of the 
air velocity. This determines the mathematical model as nonlinearly and requires special iteration 
procedures for solving the heat and mass transfer equations.  

- The complicated form of equations for boundary conditions presumes many difficulties in 
trying to solve the mathematical equations by regular numerical scheme. This goal is complicated 
additionally by unregulated variation of ambient climatic parameters (ambient temperature and solar 
radiation).  

From the point of view of engineering application, for the simulation model of passive solar 
system with massive wall the following assumptions can be grounded: 

- The literature review [1,2,5] and calculations, we carried out, showed that the heat transfer 
by convection with air circulation is up to 10 - 15% of all heat transfer in massive wall. This heat 
transfer determines very small vertical temperature variation in the wall (0.2 - 0.5 oC), because of the 
temperature equalization by heat conductivity and the large heat capacity of the wall. On the base of 
these results, the model can be simplified to one-dimensional one by assuming the different layers of 
wall construction to be at uniform temperature at any given time. In this way, equation (1) can be 
simplified to one-dimensional problem, referred only to variable x.   

 - Thermal characteristics of the massive wall and the air flow in cavity are considered as 
constants, because of small temperature variation in thermal and mass transfer processes. 
Convection and radiation heat transfer coefficients in energy balance equations are treated as 



depending on velocity and temperature difference between corresponding elements. 
- Lastly, an iterative calculation process can be organized, if equation (6) has solved 

separately, by using uniform temperatures of wall surface and glass cover (a numerical method for 
solving differential equation can be used with considering these temperatures known). The solution 
will determine the air temperature variation in the air cavity. Separate finite difference method in z 
direction has been used for solving the equation (6). On the base of received temperature rise in the 
duct, equation (6) can be rewritten as algebraic scheme using mean air temperature in the air duct:   
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and Tm and Tg are the air temperatures in bottom and top of the air gap. 
After solving the main task (1), (2), (3), (4), (5) and (8) and receiving values for temperatures of wall 
surface and inner glass, the equation (6) can be solved again and all procedure can be repeated. 
Process can be continued until sufficient accuracy is arrived.  
 
3. FINITE DIFFERENCE APPROXIMATION 

The finite-difference form of 
differential equation (1) is derived by 
integration over control volume surrounded 
the typical node i, n in solution grid (Fig.2). 
The indexes i and n refer to the thickness (x) 
and the time (τ) variable, respectively.  An 
implicit time approximation, which is stable 
for forward integration in time, is developed 
for transient differential equations. In this 
case a set of simultaneous equations needs 
to be solved at each time step. If the time 
interval is named ∆τ = (τn, τn+∆τ) = (τn, 
τn+1), the time derivative can be written 
using forward Euler formula for 
discretization: 
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Fig.2. The mesh in time and space
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For the space derivative is applied symmetrical Cranc-Nicolson’s scheme [3] for 

discretization:   
 

  (10)    
  

where σ is a weight coefficient. 
After substituting (9) and (10) in (1) and rearranging, the following general approximation is 
received: 
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This is a system of (I-2) algebraic equations with I (i = 1,2....I) unknown node temperatures 
(with upper index n+1). Temperatures with upper index n are considered as known, which are 
received from calculation, made in former time step or from initial conditions in the first time step. 
Equation (11) yields a special diagonal matrix of equations for the time layer n+1 at each space 
point. Boundary conditions (2), (3), (4), (5) and (8) must be added to complete the system. These 
equations include a new unknown temperatures (Tag, Tg1, Tg2), which requires preliminarily solving 
the boundary equations system.  

Because of complicated nature of boundary conditions and numerous difficulties, which 
appear in solution process, a new procedure for completing the algebraic system of equations is 
proposed.  The mesh is expanded by adding three new space layers, numbered 1, 2 and 3, as it is 
shown on Fig.2. These layers correspond to the elements of Trombe wall - two glass covers and air 
in the gap with temperatures Tag, Tg1, Tg2. This means that, to the algebraic system (11), it is 
necessary to add algebraic equations (3), (4) and (8). As boundary conditions in this new system 
must be used only equations (2) and (5). In this way, mathematical task becomes considerably easier 
to solve, because of simplified boundary condition system.    

 
4. SOLUTION  PROCEDURE 

Equations (11) can be solved by standard algebraic methods. Because of simple form of 
algebraic system (11), the well-known procedure with twofold calculation passage in the space 
direction of mesh is used [8]. This method is applicable for algebraic systems in form as follow: 
                              (12) 

i1+iiii1-ii F=TC+TB+TA 
where i = 1,2........I-1, whit boundary conditions: 

T0 = a0T1+ b0    and  TI = aI TI-1+ bI .                    (13) 

This algebraic system is similar to our problem (11), (2), (3), (5) and (8) with respect to the 
unknown temperatures (superscript index n+1). In the next considerations the upper indexes of 
variables in finite difference equations can be omitted for simplicity.  

Solution for above system is wanted in form as follow:     

Ti = αiTi+1 + βi ,                      (14) 

where ai and bi are unknown coefficients. This equation can be written for all indexes i, including i-

1:  

Ti-1 = αi-1 Ti + βi-1                       (15) 

 Substituting (14) in (12) and rearranging, it can be received next formulas for coefficients: 
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If it is take into account that for i = 0:  α0 = a0 and β0 = b0 (from boundary condition 
eqn.(13)), coefficients αi and βi can be calculated by using recurrent equation (16). This is the first 
calculation passage in the space direction of the solution grid. Two equations are available for the 
last node I of the grid: second part of equation (13) and equation (14) for I-1 node: TI-1 = α I-1 TI + 
βI-1 . 
From these two equations, it is possible to determine TI: 

                                                (17) 
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passage through the solution grid by using recurrent equation 



(14) to calculate temperatures Ti (i = I-1, I-2......0) of all nodes of the grid. This is a ordinarily 
procedure for solving the problem in time step. Receiving the temperatures for time step n+1, it is 
possible to make next time step. 

This simple procedure for solving the algebraic system of finite difference approximation can 
not be used directly for the mathematical problem of massive wall system described above. System 
of equations (2), (3), (4) and (8), which is added to main system (11), is not fully compatible with 
the system (12). Equation (4) comprises four unknown temperatures - two temperatures of glass 
covers Tg1 and Tg2, temperature of air in gap Tag and surface temperature Twn. This means, that 
equation (4) can not be expressed in form as the equation (14).  

To use a technique similar to mentioned above procedure for solving equations (12), a 
modified procedure can be used. Instead of eqn (15), a new temperature function (with three 
consecutive temperatures) can be considered: 

Ti = αι Ti+1  + γiTi +2 + βi           (18)   
This means that, tree unknown coefficients αι, βi and γι, must be calculated in first 

calculating passage. After doing similar steps as it has been made above (equation 16), equations for 
unknown coefficients αι, βi and γι can be easier to receive. Here, these coefficients will not be 
described for the common case, but for the special case of mathematical model for passive solar 
system with massive wall. After rearranging equations of boundary conditions in standard form 
(equation (12)), with respect to temperature function (18) and indexes in numerical grid (fig.2), the 
following equations for coefficient α, β and γ have been received: 
- for outer glass cover – equation (5). It can be rewritten in form like eqn.13: 
 Tg1 = α1. Tg2 + β1,       (19) 
where the coefficients with index i=1 are: 
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- for inner glass cover – equation (4). Substituting Tg1 from (19) and rearranging, the equation (4) 
can be transformed in form as eqn.18 with coeficiens (i=2): 
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where hgap = hcgap + hrgap
- for  air gap – equation (8). Using analogous transformation, it can also be received equation in 
form as eqn.18 with coefficients (i=3): 
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where      Dx = BH hcgap (g2+1) + 2 r G cp B 
- for wall surface – equation (2).  Here is necessary to approximate the x direction derivative of 
temperature by finite difference. The appropriate coefficients for algebraic equation are: (i=4): 
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- for ordinary wall layer - Here is valid the standard transformation (16) for equation (11)  (i): 
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Temperature of the last wall's layer (inner wall surface) can be defined by following equation: 
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and   hROOM = hcROOM + hrROOM
Knowing temperature TI

n+1, other node temperatures can be calculated with the recurrent 
formula (18). It is possible, because coefficient γ for ordinary wall layers is zero. This is the second 
calculation passage on the grid. 

To solve the mathematical problem by proposed algorithmic scheme, the heat transfer 
coefficients and the air velocity in gap, must be known in advance. These can be calculated with 
regarding temperatures and other needed variables from previous time-step calculation or from 
initial conditions in starting the calculations. For improving the precision of numeric calculations, an 
iterative calculation have been organised until needed accuracy has arrived. 

  
5. NUMERICAL EXAMPLES 
To verify the applicability of the above-
proposed technique, a large number of 
numerical examples have been carried. In 
Fig.3 and 4 is shown example of 
calculations for passive solar system with 
massive wall. Climatic data are for Sofia, 
Bulgaria. Passive system is with south 
facing concrete wall with dimensions: 
height - 3 m; width - 3.5 m and thickness - 
0.3m.   Climatic data (solar radiation and 
ambient temperature) are for February. 
The set of month’s daily distribution of 
solar radiation and ambient temperature, 
estimated in hour-by-hour period have been 
used. Five days period of simulation 
calculations was needed to exclude 
influence of initial conditions.  Following 
parameters are shown in Fig. 3 and 4: 
ambient temperature Ta, solar radiation qs, 

inner glass temperature Tg2, outer surface temperature Twn, wall temperature in middle layer Twm, 

Fig.3. Temperature distribution in elements of 
massive wall
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inner surface temperature Tw0, heat losses 
to the ambient air qt, heat transferred by 
convection qf, heat transferred by radiation 
qr. 

 
6. CONCLUSIONS 
In this paper, has been presented a 

mathematical model for passive solar 
system with massive wall.  A finite 
difference solution scheme, based on 
implicit method was developed for solving 
the combined system of algebraic and 
differential equations. A new solution 
procedure, suitable for the presented 
mathematical model was suggested. 

Computer program for simulation 
calculations was created, and with 
extensive numerical experiments, the 
applicability of presented model was 

verified.  

Fig.4. Energy balance in massive vall
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The results from presented mathematical model would help researches in field of passive 
solar systems to increase their knowledge and experience for thermal and mass transfer processes. 
The designers of passive solar systems can use this model to select optimal constructive parameters 
of the massive wall.   
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